An extension of Gompertzian growth dynamics: Weibull and Frechet models.
نویسندگان
چکیده
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta • (p,q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p=2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta• (2,q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
منابع مشابه
Computational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملOn the Gompertzian dynamics of growth and self-organization
Comment on the Waliszewski’s article ”A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization” (BioSystems 82 (2005)61-73) is presented. It has been proved that the main idea of this work that Gompertzian dynamics is governed by the Schrödinger-like equation including anharmonic Morse potential has been already introduced by Molski and Konarski in 2003...
متن کاملCellular automaton of idealized brain tumor growth dynamics.
A novel cellular automaton model of proliferative brain tumor growth has been developed. This model is able to simulate Gompertzian tumor growth over nearly three orders of magnitude in radius using only four microscopic parameters. The predicted composition and growth rates are in agreement with a test case pooled from the available medical literature. The model incorporates several new featur...
متن کاملNutrient Limitations as an Explanation of Gompertzian Tumor Growth
An intuitive and influential two-compartment model of cancer cell growth proposed by Gyllenberg and Webb in 1989 [18] with transition rates between proliferating and quiescent cells reproduces some important features of the well known Gompertzian growth model. However, other plausible mechanisms may also be capable of producing similar dynamics. In this paper, we formulate a resource limited th...
متن کاملNew Dimensions in Gompertzian Growth
The Gompertz function was formulated to represent an actuarial curve, yet it often fits growth of organisms, organs and tumors. Despite numerous attempts, no consensus has been forged about the biological foundation of the broad applicability of the model. Here we revisit the Gompertzian notion of the "power to grow" and equate it with growth fraction. Aside from conferring biological interpret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences and engineering : MBE
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2013